Wire Stories

EnginZyme Produces Key mRNA Vaccine Ingredient Using Biocatalysis

  • EnginZyme and Ajinomoto Bio-Pharma Services have developed a patented process to manufacture pseudouridine at industrial scale using biocatalysis in a sustainable, low-waste, patented process carried out in a cGMP* facility
  • EnginZyme is in talks to help alleviate supply chain difficulties in low- and middle-income countries
  • 2023 Nobel laureates discovered how pseudouridine could make mRNA suitable for vaccines

STOCKHOLM--(BUSINESS WIRE)--EnginZyme AB, a deep-tech company whose cell-free biomanufacturing technology uses the power of enzymes to create sustainable products and processes for a variety of industries, announced that it had patented a process to synthesize pseudouridine, a key ingredient in mRNA COVID-19 vaccines.


EnginZyme and its CDMO partner, Ajinomoto Bio-Pharma Services, specialized in scale up and cGMP* manufacturing of small molecules and other high-value fine chemicals, said they could provide pseudouridine at a discount to buyers taking part in efforts to bolster the global supply chain of vaccine ingredients. The companies said they had already synthesized enough pseudouridine for more than half a billion doses of vaccine in a facility that is fully cGMP* compliant.

The enzymatic process EnginZyme has perfected is cleaner and more efficient than the chemical synthesis methods currently used. A critical impurity, alpha-pseudouridine, which is a by-product of the chemical synthesis of beta-pseudouridine, is eliminated in EnginZyme's patented enzymatic synthesis. For more technical information, see our website.

The 2023 Nobel Prize for Physiology or Medicine was awarded to Katalin Karikó and Drew Weissman, the pair who discovered that changing a chemical building block of messenger RNA – substituting pseudouridine for uridine – eliminated an inflammatory side effect that stalled development of vaccines based on mRNA. They made this discovery more than 15 years before the COVID-19 pandemic.

During the COVID-19 crisis, the World Health Organization found that low- and middle-income countries were suffering from a lack of vaccine doses amid production and supply constraints, hoarding by wealthy countries, and prioritization of sales to governments that could pay the highest prices.

"Not long after we discovered the process for making pseudouridine, we realized that we could produce a pure version at scale for much less than it was going for on the market," said Karim Engelmark Cassimjee, CEO of EnginZyme. "We decided the right thing to do would be to use this discovery to help make the global healthcare supply chain more resilient." He added that academic and nonprofit organizations could apply to receive free samples for research purposes.

Geert Schelkens, R&D Manager at Ajinomoto Bio-Pharma Services, said: "The scale-up of a biocatalytic process and a green workup results in a drastic reduction of the compound's footprint. This achievement nicely aligns with our sustainability ambitions. This project with EnginZyme has been particularly rewarding because of its potential to improve the global supply chain for vaccine ingredients.”

N1-methylpseudouridine-5’-triphosphate, which is derived from pseudouridine, helps stabilize and reduce the immunogenicity of mRNA. Messenger RNA technology made headlines through the successful COVID-19 vaccines produced by Pfizer-BioNTech and Moderna, and since then, an increasing number of early-stage therapeutics and emerging vaccines have been based on the technology.

"Synthesizing pseudouridine with enzymes is so much more efficient than the chemical synthesis that is common today," said Matthew Thompson, head of enzyme development and innovation at EnginZyme. "It's a perfect example of what we are striving for: zero waste, less energy, and a cleaner result. We want to apply this across the spectrum of chemical manufacturing."

*Current Good Manufacturing Practice regulations, enforced by the U.S. FDA, provide for systems that assure proper design, monitoring, and control of manufacturing processes and facilities.

About EnginZyme

EnginZyme is changing chemistry for good. We are enabling the shift to biomanufacturing by unlocking the power of enzymes for more cost-efficient and sustainable production of everyday products. Our patented enzyme immobilisation technology enables biomanufacturing without living organisms. It can be deployed using the same tools and techniques used in traditional chemical manufacturing, with lower costs and a much smaller environmental footprint.

Based in Stockholm, EnginZyme is a growing company with a multidisciplinary team of experts in biocatalysis, organic chemistry, enzyme and process engineering, as well as AI and machine learning. This elite team is uniquely positioned to develop complete processes from techno-economic analysis all the way to industrial manufacture, incorporating a high degree of automation for safe, rapid, and reliable development.

EnginZyme has been recognised as a Technology pioneer by the World Economic Forum and was selected to the Global Cleantech 100 list in 2022 and 2023.

About Ajinomoto Bio-Pharma Services

Ajinomoto Bio-Pharma Services is a fully integrated contract development and manufacturing organization with sites in Belgium, United States, Japan, and India, providing comprehensive development, cGMP manufacturing, and aseptic fill finish services for small and large molecule APIs and intermediates. Ajinomoto Bio-Pharma Services offers a broad range of innovative platforms and capabilities for pre-clinical and pilot programs to commercial quantities, including high potency APIs (HPAPI), biocatalysis, continuous flow manufacturing, Corynex® protein expression technology, oligonucleotide synthesis, antibody drug conjugations (ADC), and more. Ajinomoto Bio-Pharma Services is dedicated to providing a high level of quality and service to meet our client’s needs. Learn more: www.AjiBio-Pharma.com

Contacts

Business development
Karl Johan Tärbe

[email protected]

Media
Bogert-Magnier Communications
James Connell

[email protected]
+33 6 2152 1955

Elodie Doan Van

[email protected]
+33 6 8099 8881

To Top